• Written by Joss Bland-Hawthorn, Director, Sydney Institute for Astronomy, University of Sydney
Conical jets of radiation burst from the black hole at the centre of the Milky Way Joss Bland-Hawthorn, Author provided

The supermassive black hole at the heart of our Galaxy spat out an enormous flare of radiation 3.5 million years ago that would have been clearly visible from Earth.

In new research that will soon be published in the Astrophysical Journal my colleagues and I found that the flare left traces in a trail of gas called the Magellanic Stream that lies some 200,000 light years away and encircles the Milky Way.

The team includes Ralph Sutherland and Brent Groves at the Australian National University and ASTRO-3D; Magda Guglielmo, Wen Hao Li and Andrew Curzons at the University of Sydney; Philip Maloney at the University of Colorado; Gerald Cecil at the University of Carolina; and Andrew J. Fox at the Space Telescope Science Institute in Baltimore.

The discovery changes our view of our galaxy’s central black hole, which has appeared dormant throughout recorded human history. Astronomers are coming to realise that it has been hugely active, even explosive, in the relatively recent past in galactic terms (measured in millions of years).

Radiation flashes out from the hot spinning gas around the supermassive black hole at the centre of the Milky Way, leaving traces in the Magellanic Stream. Credit: James Josephides / Swinburne University.

This activity has been flickering on and off for billions of years. We don’t understand why this activity is intermittent, but it has something to do with how material gets dumped onto the black hole. It might be like water droplets on a hot plate that sputter and explode chaotically, depending on their size.

Our situation on Earth resembles living near a largely dormant volcano like Mount Vesuvius that is known to have been explosively active in the past, with disastrous consequences for Pompeii.

Despite this, there’s no need to be alarmed: as far as we can tell, we are safe here in orbit about a cool dwarf star far from the centre of the Milky Way.

The bright area in the lower left is the centre of the galaxy. Only the densest clouds of dust can be seen in this infrared image. Atlas / 2MASS / University of Massachusetts / California Institute of Technology

Why is there a black hole at the centre of the galaxy?

If you look along the Milky Way in the direction of the constellation Sagittarius, you will see the dense agglomeration of stars around the centre of the galaxy. The galactic centre is marked by a very dense, very massive cluster of stars orbiting the supermassive black hole.

Earlier this year, the ESO Gravity team found a star close to the black hole travelling at up to 10,000 km per second, a few percent of the speed of light. This let them weigh the black hole to a precision of 1%, arriving at a number of about 4 million times the Sun’s mass.


Read more: Einstein’s theory of gravity tested by a star speeding past a supermassive black hole


As galactic supermassive black holes go, this is a featherweight. For example, our neighbouring galaxy Andromeda also has a supermassive black hole, but it is 50 times heavier than ours.

Essentially all large galaxies have central massive black holes. We don’t know exactly why this is so, but we know it’s important and that the growth phases of these monsters are likely to have affected the galaxy as a whole.

Understanding the effect of interactions between black holes and host galaxies is one of the hottest topics in modern astrophysics.

Some black holes are more active than others

But if we look out across the Universe, we see only a few percent of galaxies appear to have “active” black holes. By active, we mean that gas and stars spiralling into the black hole form an extremely hot ring of gas.

This ring, called an accretion disc, gets so hot that it drives jets, winds and radiating beams of light out across the galaxy. The effects of these explosions are particularly impressive in more massive galaxies.


Read more: Sizes matters for black hole formation, but there's something missing in the middle ground


For decades, Australian radio telescopes have mapped out jet flows that are far larger than the visible galaxy in the middle.

The radio jets in the galaxy Centaurus A extend more than 10 degrees across the sky – that’s the size of 20 full moons next to each other. This is remarkable given Centaurus A is 10 million light years away.

An enhanced radio image of Centaurus A. The inset picture zooms in on the jets coming from the central black hole. CSIRO/ATNF; ATCA;ASTRON; Parkes;MPIfR; ESO/WFI/AAO (UKST); MPIfR/ESO/APEX; NASA/CXC/CfA

The Milky Way explosion

Some three million years ago, our direct ancestor Australopithecus afarensis walked the Earth. They may well have looked up towards Sagittarius and seen cones of light shooting sideways from the Milky Way, brighter than any star in the night sky.

The lightshow would have appeared as static beams on a human timescale, only flickering on timescales of thousands of years. Today, the only visible remnant of that immensely powerful event is the cooling gas along the distant Magellanic Stream.

So how would life on Earth have fared if the explosive jet was directed straight at us? This is a valid question, because we believe that the spin axis of the accretion disc flops around wildly in lightweight supermassive black holes.

The beams of radiation from the black hole’s accretion disk flop around in different directions over thousands of years. Credit: Phil Hopkins / Caltech.

If the beam was pointing at the Solar System, the jet would have to plough through the Milky Way disc, and it would take about ten million years to reach us.

So it’s possible that a more ancient explosion could have produced a powerful jet that is yet to reach us.

But we need not worry – at its peak, the intensity of the jet when it reaches us is unlikely to exceed the most energetic solar flares. These are known to knock out satellites, and pose a threat to space-walking astronauts, but our own atmosphere largely protects us on Earth.

Joss Bland-Hawthorn receives funding from the Australian Research Council, in particular, an Australian Laureate Fellowship. Joss is a CI for the ARC funded Centre of Excellence ASTRO-3D and is Director of the Sydney Institute for Astronomy, University of Sydney.

Authors: Joss Bland-Hawthorn, Director, Sydney Institute for Astronomy, University of Sydney

Read more http://theconversation.com/a-dormant-volcano-the-black-hole-at-the-heart-of-our-galaxy-is-more-explosive-than-we-thought-124696

EVERYTHING YOU NEED TO KNOW ABOUT COSMETIC SURGERIES

Science has made breakthroughs in numerous fields and achieved milestones that no one thought was possible before. These achievements are not limited to saving lives using advanced medical procedure...

News Company - avatar News Company

Is Brisbane Property Market A Good Place to Invest?

Investing in real estate can be a very profitable venture, but one must approach such a decision with care. As any businessperson knows, one very important factor when it comes to selecting property...

Himanshu Agarwal - avatar Himanshu Agarwal

Last summer's fish carnage sparked public outrage. Here's what has happened since

Graeme McCrabb/AAPAs this summer draws to a close, it marks just over a year since successive fish death events at Menindee in Lower Darling River made global headlines. Two independent investigatio...

Lee Baumgartner, Professor of Fisheries and River Management, Institute for Land, Water, and Society, Charles Sturt University - avatar Lee Baumgartner, Professor of Fisheries and River Management, Institute for Land, Water, and Society, Charles Sturt University

It's now a matter of when, not if, for Australia. This is how we're preparing for a jump in coronavirus cases

ShutterstockWhile countries around the globe have been taking precautions to prevent the spread of COVID-19, the disease caused by the novel coronavirus, it has now been reported in 37 countries outs...

Katherine Gibney, NHMRC early career fellow, The Peter Doherty Institute for Infection and Immunity - avatar Katherine Gibney, NHMRC early career fellow, The Peter Doherty Institute for Infection and Immunity

Many Scots want independence from the United Kingdom. How might that play out in a post-Brexit world?

AAP/EPA/Robert PerryOf the many issues thrown up by Brexit, one of the most pressing is the territorial integrity of the United Kingdom. Brexit was in large measure a revolt by a certain section of ...

Simon Tormey, Professor of Politics, University of Bristol - avatar Simon Tormey, Professor of Politics, University of Bristol

Vital Signs: a 3-point plan to reach net-zero emissions by 2050

ShutterstockEvery January Larry Fink, the head of the world’s largest funds manager, BlackRock, sends a letter to the chief executives of major public companies. This year’s letter focu...

Richard Holden, Professor of Economics, UNSW - avatar Richard Holden, Professor of Economics, UNSW

Requiring firms to only sell financial products we can use is good, but not enough

ShutterstockThe government’s financial system inquiry, on which I sat, reported five years ago. It recommended that the creators of financial products be subject to a design and distribution o...

Kevin Davis, Professor of Finance, University of Melbourne - avatar Kevin Davis, Professor of Finance, University of Melbourne

Friday essay: a real life experiment illuminates the future of books and reading

Books are always transforming. The book we hold today has arrived through a number of materials (clay, papyrus, parchment, paper, pixels) and forms (tablet, scroll, codex, kindle). The book can be a...

Andy Simionato, Lecturer, RMIT University - avatar Andy Simionato, Lecturer, RMIT University

Angus Taylor sets down 'markers' to measure success of government's technology roadmap

The government would be looking for the private sector to put in four or five times as much as it invests in research and development of particular technologies to reduce emissions, Energy Minister An...

Michelle Grattan, Professorial Fellow, University of Canberra - avatar Michelle Grattan, Professorial Fellow, University of Canberra

Sick and Tired of Your Dead End Job? Try Teaching!

Tired of the same old grind at the office? Want an opportunity to impact lives both in your community and around the world? Do you love to travel and have new experiences? Teaching English is the perfect job for you! All you need is a willingness to ...

News Company - avatar News Company

The Impact of an Aging Population in Australia

There’s an issue on the horizon that Australia needs to prepare for. The portion of elderly citizens that make up the country’s overall population is increasing, and we might not have the infrastructure in place to support this. Australians h...

News Company - avatar News Company