• Written by Gottfried Lechner, Associate Professor and Director of the Institute for Telecommunications Research, University of South Australia, University of South Australia
The electromagnetic spectrum we can access with current technologies is completely occupied. This means experts have to think of creative ways to meet our rocketing demands for data. NASA Johnson/Flickr, CC BY-NC

Satellites are becoming increasingly important in our lives, as they help us meet a demand for more data, exchanged at higher speeds. This is why we are exploring new ways of improving satellite communication.

Satellite technology is used to navigate, forecast the weather, monitor Earth from space, receive TV signals from space, and connect to remote places through tools such as satellite phones and NBN’s Sky Muster satellites.

All these communications use radio waves. These are electromagnetic waves that propagate through space and, to a certain degree, through obstacles such as walls.

Each communication system uses a frequency band allocated for it, and each band makes up part of the electromagnetic spectrum – which is the name given to the range of all types of electromagnetic radiation.

But the electromagnetic spectrum we are able to use with current technology is a finite resource, and is now completely occupied. This means old services have to make room for new ones, or higher frequency bands have to be used.

While this poses technological challenges, one promising way forward is optical communication.

Communication with lasers

Instead of using radio waves to carry the information, we can use light from lasers as the carrier. While technically still part of the electromagnetic spectrum, optical frequencies are significantly higher, which means we can use them to transfer data at higher speeds.


Read more: Twisted light could dramatically boost internet speeds


However, one disadvantage is that a laser cannot propagate through walls, and can even be blocked by clouds. While this is problematic on Earth, and for communication between satellites and Earth, it’s no problem for communication between satellites.

On Earth, optical communication via fibre optic cables connects continents and provides enormous data exchanges. This is the technology that allows the cloud to exist, and online services to be provided.

Optical communication between satellites doesn’t use fibre optic cables, but involves light propagating through space. This is called “free space optical communication”, and can be used to not only deliver data from satellites to the ground, but also to connect satellites in space.

In other words, free space optical communication will provide the same massive connectivity in space we already have on Earth.

Some systems such as the European Data Relay System are already operational, and others like SpaceX’s Starlink continue to be developed.

But there are still many challenges to overcome, and we’re limited by current technology. My colleagues and I are working on making optical, as well as radio-frequency, data links even faster and more secure.

CubeSats

So far, a lot of effort has gone into the research and development of radio-frequency technology. This is how we know data rates are at their highest physical limit and can’t be further increased.

The first CubeSats were launched in 2003 on a Russian Rockot launch vehicle. Jared/Flickr, CC BY-NC

While a single radio-frequency link can provide data rates of 10Gbps with large antennas, an optical link can achieve rates 10 to 100 times higher, using antennas that are 10 to 100 times smaller.

These small antennas are in fact optical lenses, and their compact size allows them to be integrated into small satellites called CubeSats.

CubeSats are not larger than a shoebox or toaster, but can employ high speed data links to other satellites or the ground.

They are currently used for a wide range of tasks including earth observation, communications and scientific experiments in space. And while they’re not able to provide all services from space, they play an important role in current and future satellite systems.


Read more: The problems with small satellites – and what Australia's Space Agency can do to help


Another advantage of optical communication is increased security. The light from a laser forms a narrow beam, which has to be pointed from a sender to a receiver. Since this beam is very narrow, the communication doesn’t interfere with other receivers and it’s very hard, if not impossible, to eavesdrop on the communication. This makes optical systems more secure than radio electromagnetic systems.

Optical communication can also be used for Quantum Key Distribution. This technology allows the absolute secure exchange of encryption keys for safe communications.

What can we expect from this?

While it’s exciting to develop systems for space, and to launch satellites, the real benefit of satellite systems is felt on Earth.

High speed communication provided by optical data links will improve connectivity for all of us. Notably, remote areas which currently have relatively slow connections will experience better access to remote health and remote learning.


Read more: How new technologies are shaking up health care


Better data links will also let us deliver images and videos from space with less delay and higher resolution. This will improve the way we manage our resources, including water, agriculture and forestry.

They will also provide vital real-time information in disaster scenarios such as bushfires. The potential applications of optical communication technology are vast.

Banding knowledge together

Working in optical satellite communication is challenging, as it combines many different fields and research areas including telecommunication, photonics and manufacturing.

Currently, our technology is far from achieving what is theoretically possible, and there’s great room for improvement. This is why there’s a strong focus on collaboration.

In Australia, there are two major programs facilitating this - the Australian Space Agency run by the federal government, and the SmartSat Cooperative Research Centre (CRC), also supported by the federal government.

Through the SmartSat CRC program, my colleagues and I will spend the next seven years tackling a range of applied research problems in this area.

Gottfried Lechner works for the University of South Australia and the SmartSat CRC. He receives funding from the Australian Research Council, Defence and the Department of Industry, Innovation and Science.

Authors: Gottfried Lechner, Associate Professor and Director of the Institute for Telecommunications Research, University of South Australia, University of South Australia

Read more http://theconversation.com/were-using-lasers-and-toaster-sized-satellites-to-beam-information-faster-through-space-126344

All You Need to Know About Trenchless Technology

For many years, the traditional sewerage lines and pipe developments were not enough due to the long wait and cracking. The traditional sewer pipe repairs involved cracking the earth to find the par...

News Company - avatar News Company

Before we rush to rebuild after fires, we need to think about where and how

A primary school in East Gippsland was burnt down in the current bushfire crisis. While Premier Daniel Andrews immediately committed to rebuilding the school as it was, media reported the local CFA ca...

Mark Maund, PhD Candidate, School of Architecture and Built Environment, University of Newcastle - avatar Mark Maund, PhD Candidate, School of Architecture and Built Environment, University of Newcastle

Australian sea lions are declining. Using drones to check their health can help us understand why

Australian sea lions (Neophoca cinerea) are one of the rarest pinnipeds in the world and they are declining. Jarrod Hodgson, CC BY-NDAustralian sea lions are in trouble. Their population has never rec...

Jarrod Hodgson, PhD Candidate, University of Adelaide - avatar Jarrod Hodgson, PhD Candidate, University of Adelaide

With costs approaching $100 billion, the fires are Australia's costliest natural disaster

It’s hard to estimate the eventual economic cost of Australia’s 2019-20 megafires, partly because they are still underway, and partly because it is hard to know the cost to attribute to de...

Paul Read, Climate Criminologist & Senior Instructor/Lecturer, Faculty of Medicine, Monash University - avatar Paul Read, Climate Criminologist & Senior Instructor/Lecturer, Faculty of Medicine, Monash University

In cases of cardiac arrest, time is everything. Community responders can save lives

Cardiac arrest can occur with little or no warning in people who were previously healthy, including young people. From shutterstock.comEach year more than 24,000 Australians experience a sudden cardia...

Bill Lord, Adjunct Associate Professor, Monash University - avatar Bill Lord, Adjunct Associate Professor, Monash University

So the government gave sports grants to marginal seats. What happens now?

When Australians pay their income tax, they assume the money is going to areas of the community that need it, rather than being used by the government to shore up votes for the next election. This is...

Maria O'Sullivan, Senior Lecturer, Faculty of Law, and Deputy Director, Castan Centre for Human Rights Law, Monash University - avatar Maria O'Sullivan, Senior Lecturer, Faculty of Law, and Deputy Director, Castan Centre for Human Rights Law, Monash University

The Olympics have always been a platform for protest. Banning hand gestures and kneeling ignores their history

It is the year of the Tokyo Olympics, and the International Olympic Committee was quickly out of the blocks with new guidelines regarding athlete protests. The IOC is worried the biggest stories of...

David Rowe, Emeritus Professor of Cultural Research, Institute for Culture and Society, Western Sydney University - avatar David Rowe, Emeritus Professor of Cultural Research, Institute for Culture and Society, Western Sydney University

Where Can You Get Weed By Ordering It Online?

Nowadays, everyone wants to get their hands on some weed. Marijuana has become legalized in a lot of countries worldwide. People wait in lines for days to buy some. You couldn’t have imagined that...

News Company - avatar News Company

Hidden women of history: Catherine Hay Thomson, the Australian undercover journalist who went inside asylums and hospitals

Catherine Hay Thomson went undercover as an assistant nurse for her series on conditions at Melbourne Hospital. A. J. Campbell Collection/National Library of AustraliaIn this series, we look at under...

Kerrie Davies, Lecturer, School of the Arts & Media, UNSW - avatar Kerrie Davies, Lecturer, School of the Arts & Media, UNSW

Sick and Tired of Your Dead End Job? Try Teaching!

Tired of the same old grind at the office? Want an opportunity to impact lives both in your community and around the world? Do you love to travel and have new experiences? Teaching English is the perfect job for you! All you need is a willingness to ...

News Company - avatar News Company

The Impact of an Aging Population in Australia

There’s an issue on the horizon that Australia needs to prepare for. The portion of elderly citizens that make up the country’s overall population is increasing, and we might not have the infrastructure in place to support this. Australians h...

News Company - avatar News Company